

Characterizing and Comparing Prevailing Simulation Techniques

Joshua J. Yi1, Sreekumar V. Kodakara2, Resit Sendag3, David J. Lilja2, Douglas M. Hawkins4

1 - Networking and Computing Systems Group
Freescale Semiconductor, Inc.

Austin, TX
joshua.yi@freescale.com

3 - Department of Electrical and Computer Engineering

University of Rhode Island
Kingston, RI

sendag@ele.uri.edu

2 - Department of Electrical and Computer Engineering
University of Minnesota

Minneapolis, MN
{sreek, lilja}@ece.umn.edu

4 - School of Statistics

University of Minnesota
Minneapolis, MN

doug@stat.umn.edu

Abstract

Due to the simulation time of the reference input set,

architects often use alternative simulation techniques.
Although these alternatives reduce the simulation time, what
has not been evaluated is their accuracy relative to the
reference input set, and with respect to each other. To
rectify this deficiency, this paper uses three methods to
characterize the reduced input set, truncated execution, and
sampling simulation techniques while also examining their
speed versus accuracy trade-off and configuration
dependence. Finally, to illustrate the effect that a technique
could have on the apparent speedup results, we quantify the
speedups obtained with two processor enhancements. The
results show that: 1) The accuracy of the truncated execution
techniques was poor for all three characterization methods
and for both enhancements, 2) The characteristics of the
reduced input sets are not reference-like, and 3) SimPoint
and SMARTS, the two sampling techniques, are extremely
accurate and have the best speed versus accuracy trade-offs.
Finally, this paper presents a decision tree which can help
architects choose the most appropriate technique for their
simulations.

1. Introduction

The SPEC 2000 benchmark suite [11] is the current de
facto standard for simulation-based computer architecture
research. The largest input set for each benchmark in this
suite is called the reference input set. Although this input
set typically yields the most realistic behavior, it is rarely
simulated to completion due to its very long simulation time.

Since these lengthy simulation times preclude a detailed
exploration of the design space, computer architects resort to
alternative simulation techniques to reduce the simulation
time. These techniques include: reducing the size of the input
set, simulating a piece of the program that is presumed to be
representative of the whole program, and sampling. Although

these techniques reduce the simulation time, what is not clear
is how the characteristics and the accuracy of each technique
compare to the reference input set and to each other.
Without thoroughly understanding the effects that these
techniques can have on the results, the validity of those
results is suspect, which nullifies the point of performing the
simulations in the first place.

To address this issue, this paper evaluates the accuracy
of the six most prevalent techniques – with respect to the
reference input set – by characterizing them using three
different methods. The six techniques are: 1) SimPoint [18],
2) Reduced input sets (MinneSPEC [13] and SPEC test and
train), 3) Simulating the first Z million instructions only,
4) Fast-forwarding X million instructions and then simulating
the next Z million, 5) Fast-forwarding X million, warming-up
the processor for the next Y million, and then simulating the
next Z million instructions, and 6) SMARTS, which is a
rigorous, statistically-based sampling technique [20]. The
three methods used to characterize these techniques are the:
A) Processor bottleneck, B) Execution profile, and C)
Architectural Level characterizations. After determining the
accuracy of these techniques using these characterizations, we
then analyze each from three additional perspectives, namely:
their speed versus accuracy trade-off, potential configuration
dependence, and the fidelity of their performance bottlenecks.
Finally, this paper quantifies the effect that these techniques
can have on the execution time for two microarchitectural
enhancements – simplifying and eliminating trivial
computations [22], and next-line prefetching [12]. The
purpose of these comparisons is to determine the effect that
each technique’s inaccuracies could have on the apparent
speedup of an enhancement, as compared to the actual
speedup when using the reference input set.

The contributions of this paper are as follows:

1. It characterizes the accuracy of the six most
popular techniques, with respect to the
reference input set, at the hardware,
software, and architectural levels.

2. It compares the speed versus accuracy trade-off
of each technique.

3. It examines the potential configuration
dependence of each technique.

4. It shows how the induced error of each
technique can affect the apparent performance
improvement of two enhancements.

5. It presents a decision tree to help architects
choose the technique that is best for their
simulations.

The remainder of this paper is organized as follows:

Section 2 describes the problem, in addition to describing
each of the six techniques. Descriptions of the experimental
framework and each characterization method are given in
Sections 3 and 4, respectively, while the simulation results
are given in Sections 5, 6, and 7. Section 8 describes some
related work. Section 9 makes specific recommendations
about simulation methodology and Section 10 concludes.

2. Prevailing Simulation Techniques

To reduce the simulation time to a tractable level, several
techniques are commonly used to approximate the behavior
of the reference input set. These techniques fall into three
categories: 1) Reduced input sets, 2) Truncated execution, and
3) Sampling.

Reduced Input Sets: The basic idea behind reduced input
sets is to modify the reference input set in some way to
reduce the simulation time when using the modified input set.
The hope is that the reduced input set still retains the
characteristics of the reference input set, but with a lower
simulation time. The primary advantage of using reduced
input sets is that the entire behavior of the program is
simulated in detail, including: initialization, the main body of
the computation, and cleanup. The main disadvantage is that
their results may be very dissimilar compared to those
produced by the reference inputs. In addition, developing
reduced input sets can be a very tedious and time-consuming
process. Examples of SPEC 2000 reduced input sets include
the test and train input sets from SPEC, and the
MinneSPEC small, medium, and large reduced input
sets [13].

Truncated Execution: In truncated execution, the
benchmark is simulated for a fixed number of instructions
while presuming that that arbitrary sample is representative of
the entire program. There are three primary variations. In the
simplest case, which we call Run Z, only the first Z million
instructions of the benchmark are simulated using the
reference input set, where the value of Z determines the
simulation time. A variation on this idea is to fast-forward
through the first X million instructions and then switch to
detailed simulation for the next Z million (i.e. Fast-Forward
X + Run Z or FF X + Run Z). This technique potentially
improves on Run Z by skipping over the less interesting
aspects of the program. One problem with FF X + Run Z is
that, after fast-forwarding, the processor and memory states
are “cold” (i.e. invalid). The solution to this problem is to

“warm-up” the processor and memory before starting detailed
simulation. One simple implementation is to perform detailed
simulation for Y + Z million instructions after fast-forwarding
while tracking the simulation statistics for only the last Z
million. We refer to this technique as Fast-Forward X +
Warm-Up Y + Run Z (FF X + WU Y + Run Z).

Sampling: Population sampling is a statistical technique
that is used to infer the characteristics of the population by
extrapolating from the characteristics observed in a subset
[14]. The key to good results with population sampling is to
ensure that the subset chosen accurately reflects the overall
population. Three primary sampling techniques have been
proposed for use in computer architecture research studies –
representative, periodic, and random sampling.

Representative sampling attempts to extract from a
benchmark a subset of its dynamic instructions that matches
its overall behavior when using the reference input set.
With the SimPoint [18] technique, for example, a relatively
small number of simulation points are chosen to be
representative of the behavior of the entire program.
Determining the simulation points first involves profiling the
benchmark to identify the candidate simulation points and
then using statistically-based clustering to select a set that is
representative of the entire program. After simulation, the
results from each simulation point are weighted to compute
the final simulation results. The number of simulation points
and the length of each determines the overall simulation time.

By contrast, periodic sampling simulates selected
portions of the dynamic instruction execution at fixed
intervals. The sampling frequency and the length of each
sample are used to control the overall simulation time;
SMARTS (Sampling Microarchitectural Simulation) [20] is a
recent example. To improve its accuracy, SMARTS uses
statistical sampling theory to estimate the CPI error of the
sampled simulation versus the reference simulation. If the
estimated error is higher than the user-specified confidence
interval, then SMARTS recommends a higher sampling
frequency. SMARTS also uses “functional warming” to
maintain branch predictor and cache state.

Finally, in random sampling, the simulation results from
N randomly chosen and distributed intervals are combined
together to produce the overall simulation results. To reduce
the error associated with random sampling, Conte et al. [6]
suggested increasing the number of instructions dedicated to
processor warm-up before each sample and/or increasing the
number of samples.

Prevalence of Simulation Techniques: In addition to
simulating the reference input set to completion and the
above techniques, a multiplicity of additional permutations
exist. For obvious reasons, quantifying the accuracy of all
permutations is infeasible. Therefore, to determine the set of
techniques to analyze in this paper, we examined the last ten
years of HPCA, ISCA, and MICRO to determine the most
prevalent techniques. Our results show that the four most
popular techniques are: FF X + Run Z (27.3% of all known
techniques), Run Z (23.1%), Reduced input sets (18.5%), and
simulating the benchmark to completion (17.8%). Since these
four techniques account for almost 90% of all known

Table 1. The Final Specifics of the Candidate Simulation Techniques (Note: X+Y Mod 100M = 0)

Number of Permutations Technique Permutations

3 SimPoint
(Standard)

Single 100M, Multiple 10M (max_K: 100) and 100M (max_K: 10)
SimPoint 1.0, 7 Random Seeds (seedproj = 1), 100 iterations
Warm-Up: Assume cache hit; 1M for 10M, 0M for 100M [10]

9 SMARTS

Detailed Simulation Length per Sample (U): 100, 1000, 10000
Warm-Up Length per Sample (W): 200, 2000, 20000
Initial Number of Samples (n): 10,000
Configuration: 99.7% Confidence Level, ±3% Confidence Interval [20]]
MinneSPEC small, medium, large

3-5 Reduced
SPEC test, train

4 Run Z Z: 500M, 1000M, 1500M, 2000M
X: 1000M, 2000M, 4000M 12 FF X +

Run Z Z: 100M, 500M, 1000M, 2000M
X: 999M, 1999M, 3999M; 990M, 1990M, 3990M, 900M, 1900M, 3900M
Y: 1M; 10M, 100M 36

FF X +
WU Y +
Run Z Z: 100M, 500M, 1000M, 2000M

techniques, we included these four techniques in the set of
candidate techniques studied in this paper. By contrast, we
excluded random sampling since it was rarely used, despite it
being a fairly well-known technique. We also included
SimPoint and SMARTS in our final set since they are likely
in increase in frequency. Finally, we included FF X + WU Y +
Run Z, since it is a more accurate version of FF X + Run Z.
Table 1 shows our final list of the 69 permutations of the
candidate techniques. The values of X, Y, and Z were based
on the superset of common permutations that we found in our
survey. The specific values for SimPoint and SMARTS were
based on those from [4, 10, 18, 20, 21].

3. Experimental Framework

In this paper, we used wattch [3] as the base simulator.
We modified wattch to include: user-configurable
instruction execution latencies and throughputs, and a user-
configurable warm-up. To implement SMARTS, we added
periodic sampling, functional warming, and statistical error
estimation to wattch.

To characterize the accuracy of each technique, we used
a total of 56 different processor configurations. Since these
configurations are associated with a specific characterization
method, the configurations are listed in Sections 4.1 and 4.3
along with its method.

The 10 benchmarks that were used in this study, shown
in Table 2 along with their input sets, were selected from the
SPEC 2000 benchmark suite because they are all written in C
and because these benchmarks represent the most popular
benchmarks that architects typically use [5]. The total
simulation time limited the number of benchmarks that we
could simulate. Even then, to simulate the reference input
set and the 69 permutations in Table 1 for 56 configurations
and 10 benchmarks required the simulation of over 1
quadrillion (1015) detailed instructions, which required
approximately 40 CPU-years. All benchmarks were compiled

at optimization level O3 using SimpleScalar’s version of the
gcc compiler, version 2.6.3. With the exception of the
reduced input sets, the input set for all techniques was the
reference input set, or one of the reference input sets
when more than one was available.

4. Description of the Characterization Methods

To measure the accuracy of each technique, we used
three different characterization methods. Section 4 describes
these methods, while Section 5 presents the results of each.

4.1. Processor Bottleneck Characterization

The first characterization method is a performance
bottleneck analysis using a Plackett and Burman design [17],
or PB design. For architects, the PB design can determine
which processor and memory parameters have the largest
effect on the performance, i.e. are the biggest performance
bottlenecks. The output of a PB design is a value that is
associated with each input parameter. The magnitude of this
number represents the effect that that parameter has on the
variability in the output value, e.g. number of cycles. The
parameters with the largest PB magnitudes have the largest
effect on the number of cycles, and represent the largest
performance bottlenecks in the processor and memory sub-
system.

After calculating the effect that each parameter has on
the CPI, we rank the parameters based on their PB
magnitudes (1=Largest magnitude) and then vectorize the
ranks. To determine the similarity in the performance
bottlenecks of the reference input set and each technique,
we calculate the Euclidean distance between the two rank
vectors. Therefore, the technique that has the smallest
Euclidean distance is the one that is the most accurate, i.e. has
the set of performance bottlenecks that is most similar to
those of the reference input set. (It is important to note

Table 2. SPEC 2000 Benchmarks and Input Sets

Benchmark small medium large test train reference

gzip smred.log mdred.log lgred.log test.combined train.combined ref.log
vpr-Place
vpr-Route

smred.net
small.arch.in

mdred.net
small.arch.in N/A test.net

small.arch.in
train.net

train.arch.in
ref.net

ref.arch.in
gcc smred.c-iterate.i mdred.rtlanal.i N/A cccp.i cp-decl.i 166.i
art N/A N/A -startx 110
mcf smred.in N/A lgred.in test.in train.in ref.in

equake N/A N/A lgred.in test.in train.in ref.in
perlbmk smred.makerand mdred.makerand N/A N/A scrabbl diffmail
vortex smred.raw mdred.raw lgred.raw test.raw train.raw lendian1.raw
bzip2 N/A N/A lgred.source test.random train.compressed ref.source

Table 3. Processor Configurations Used for the Architectural Level Characterization

Parameter Config #1 Config #2 Config #3 Config #4

Decode, Issue, Commit Width 4-Way 8-Way
Branch Predictor, BHT Entries Combined, 4K Combined, 8K Combined, 16K Combined, 32K

ROB/LSQ Entries 32/16 64/32 128/64 256/128
Int/FP ALUs (Mult/Div Units) 2/2 (1/1) 4/4 (4/4) 6/6 (4/4) 8/8 (8/8)

L1 D-Cache Size (KB), Assoc, Lat (Cycles) 32, 2-Way, 1 64, 4-Way, 1 128, 2-Way, 1 256, 4-Way, 1
L2 Cache Size (KB), Assoc, Lat (Cycles) 256, 4-Way, 10 512, 8-Way, 7 1024, 4-Way, 15 2048, 8-Way, 12
Memory Lat (Cycles): First, Following 150, 10 100, 5 300, 20 200, 10

that we verified that using ranks did not significantly distort
the results, as compared to using the PB magnitudes. Rather,
using ranks prevented single parameters from dominating the
results, which allowed less significant parameters to have
some, limited, effect.)

Finally, our set of processor and memory parameter
values is similar to those found in [22].

4.2. Execution Profile Characterization

If the PB design is a hardware-level characterization,
then its software-level counterpart is the basic block
characterization. We characterize the basic blocks based on
their execution frequencies (BBEF) and their instruction
counts (BBV in SimPoint terminology). In this paper, we
define a basic block to be the group of instructions between a
branch target (taken or not taken) up to the next branch. The
BBEF is simply the number of times that each basic block is
executed. By comparing the BBEF profiles for the
reference input set and each technique, we can determine
how accurate that technique is, in terms of code coverage.
The BBV is similar to BBEF except that, instead of
incrementing the count by one each time a basic block is
executed, we increment that basic block’s counter by the
number of instructions that were executed in that instance of
that basic block. This characterization factors in the number
of instructions in each basic block.

We use a χ2 test [15] to compare the distributions of the
reference input set and each technique. If the χ2 test value
is smaller than the χ2 statistic, then the two distributions are
considered to be statistically similar. We also use the χ2 test

value as a measure of the distance between the two
distributions; similar distributions will have a very small χ2
test value.

4.3. Architecture Level Characterization

The last characterization method that we used to
compare techniques is at the architectural level. We first
vectorize a set of metrics (IPC, branch prediction accuracy,
L1 D-Cache hit rate, and L2 Cache hit rate), after normalizing
each metric to allow for cross-metric comparisons, and then
calculate its Euclidean distance from the reference input
set. We included this characterization since these metrics are
often used by architects to evaluate their enhancements.
However, the principal deficiency of using architectural level
metrics is that, since they average the effect of all factors over
time to produce a single number, the effects of larger
interactions may counterbalance each other while obscuring
the effects of lower-order interactions. Table 3 lists the key
parameter values for the four configurations used for the
architecture level characterization. These parameter values
were chosen based on a survey of several commercial
processors.

5. Results of Characterization Methods

The next three sections present the results of our analysis
of the accuracy and simulation speed for the six techniques
specified in Section 2. Section 5 presents the results for the
three characterization methods while Section 6 describes the
speed versus accuracy trade-off of each and the potential

0

10

20

30

40

50

60

70

80

gzip vpr-Place vpr-Route gcc art mcf equake perlbmk vortex bzip2

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

SimPoint SMARTS Reduced Run Z FF+Run Z FF+WU+Run Z

Figure 1. The Normalized Euclidean Distance Away from the reference Input Set for Each Type of Simulation

Technique for the Performance Bottleneck Characterization. For Each Technique, the Average (Mean)
Distance is Shown Along with the Minimum and Maximum Distance (Error Bars).

configuration dependence that each of these techniques could
have. Finally, in Section 7, we illustrate how the inaccuracies
of each technique can affect the apparent speedup results
when evaluating a processor enhancement and a memory
hierarchy enhancement.

5.1. Processor Bottleneck Characterization Results

and Analysis

Since the number of elements in each vector of ranks is
43, and since the value of each element is a number between
1 and 43, the maximum Euclidean distance between two
vectors occurs when the ranks for the two vectors are
completely “out-of-phase”, i.e. <43, 42, 41, … 3, 2, 1> versus
<1, 2, 3, … 41, 42, 43>); this distance is 162.75. Figure 1
presents the average distance for each type of technique,
normalized to the maximum distance and scaled to 100.

Across all benchmarks, the accuracy of the reduced input
sets varies significantly. In general, the poor accuracy (large
distance) of the reduced input sets is due to two reasons. First,
especially in the case of mcf, the percentage of cycles due to
cache misses serviced by main memory is much larger for the
reference input set than in any of the reduced input sets.
Consequently, we expect – and find – that the reduced input
sets tend to underestimate the rank of the memory hierarchy-
related parameters. For example, in gcc, the rank of the
memory latency for the reference input set is 3 while its
rank for the SPEC test reduced input set is 41. Second, our
results for the basic block analysis, presented in Section 5.2,
show that the execution profiles of the reduced input sets and
the reference input set are very different. In other words,
using a reduced input set effectively simulates a different
program than when using the reference input set.

With the exceptions of vpr-Place and art, the accuracy of

the truncated execution techniques (i.e. Run Z variants) is
also quite poor. Although the distances for FF X + Run Z and
FF X + WU Y + Run Z are lower than the distances for Run
Z, the reasons for the poor accuracy of these techniques is the
same. First, since the values of X, Y, and Z are chosen
arbitrarily, these three techniques simulate a portion of the
program that not only may be uninteresting, but that may also
be unrepresentative of the entire benchmark. Second, given
the highly complex phase behavior of some of these
benchmarks – gcc is an excellent example – simulating a few
billion instructions, even after fast-forwarding through a few
billion instructions, does not simulate enough phases of the
program to elicit a similar set of performance bottlenecks.
However, increasing the period of detailed simulation reduces
the appeal of this class of techniques by increasing its
simulation time.

In general, there is a very small distance between
SimPoint or SMARTS and the reference input set, in
terms of their performance bottlenecks. At the very least, the
distances for these two techniques are much lower than that
of the other techniques. Overall, SMARTS is slightly more
accurate than SimPoint since, for 6 of the 10 benchmarks, the
minimum distance for SMARTS is lower than the minimum
distance for SimPoint (In terms of the average distance,
SMARTS is smaller for 5 benchmarks.)

It is important to note that large differences in the ranks
for parameters that are not significant can increase the
apparent distance for a technique. To examine if this is the
case, Figure 2 shows the difference in the SimPoint and
SMARTS distances, with respect to the reference input
set, i.e. ||SimPoint – reference|| – ||SMARTS –
reference||. Figure 2 only shows the results for the most
accurate (smallest Euclidean distance) permutation.

-30

-25

-20

-15

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Parameter (Decreasing Significance)

D
iff

er
en

ce
 in

 E
uc

lid
ea

n
D

is
ta

nc
e

gzip vpr-Place vpr-Route gcc art mcf equake perlbmk vortex bzip2

Figure 2. Difference in the SimPoint and SMARTS Euclidean Distances in Ascending Order of Rank

The parameters along the X-axis are sorted in ascending
order of reference input set rank for each benchmark.
Therefore, the same index in different benchmarks may
correspond to different parameters. This plotting allows us to
examine the effect of each parameter in decreasing order of
significance in each benchmark. The difference in the
distances for parameter N is the difference in the distances
when only the N most significant parameters are included in
the distance calculations.

For all benchmarks except for gcc, there is very little
difference between the Euclidean distances for SimPoint and
SMARTS, at least for the most significant parameters.
Therefore, we conclude that for these benchmarks, with the
exception of mcf, SMARTS is slightly more accurate than
SimPoint; for mcf, SimPoint is slightly more accurate than
SMARTS. For gcc, there is a difference in the Euclidean
distances starting at parameter 3 (memory latency) because
SimPoint underestimates the significance of the memory
latency for this benchmark. This is due to the fact that gcc has
very complex phase behavior and that for this specific
SimPoint configuration (multiple 10M simulation points),
phase transitions are typically not chosen to be simulation
points [4], which subsequently underestimates the effect of
the memory latency. However, increasing the maximum
number of simulation points, e.g. using 1M simulation points
with a max_K of 300, can minimize this problem.

In conclusion, the results in this section show that the
reduced input set and truncated execution techniques are very
inaccurate compared to the results obtained by the
reference input set. By contrast, SimPoint and SMARTS
are both very accurate techniques, although SimPoint slightly
underestimates the effect of the memory latency in gcc.

5.2. Execution Profile and Architectural Level

Characterization Results and Analysis

In this section, we examine how the techniques compare

to the reference input set when using the execution
profile and architectural level characterizations. Since the
results from both of these characterizations are fully coherent
with those presented in the previous section, and due to space
limitations, we omit tables of these results. Furthermore,
since the results of the BBEF and BBV are virtually identical,
we discuss only the results of the BBV characterization.

For the execution profile characterization, the results
show that almost all permutations for all techniques executed
a statistically similar set of basic blocks as the reference
input set executed. However, the reason that the execution
profiles for almost all permutations were statistically similar
is because there were an extremely large number of basic
blocks for the reference input set which results in a very
large χ2 statistic. That being stated, the results from this
characterization show that the reduced input set and truncated
execution techniques still have very different execution
profiles than the reference input set. This result is not
surprising since truncated execution simulates a small portion
of the program and since reduced input sets do not simulate
the same pieces of the benchmark at the same frequencies as
the reference input set. On the other hand, the execution
profiles for SMARTS and SimPoint are very similar to that of
the reference input set, although SMARTS is more
similar.

The conclusions from the results of the architectural
level characterization are the same as the conclusions from
the performance bottleneck and the execution-profile
characterizations. Namely, the reduced input set and
truncated execution techniques yield very different
architectural metrics than does the reference input set
while the architectural metrics for SimPoint and SMARTS
are much more similar. These results, of course, are not
surprising given the results of the other two characterizations.

It is extremely important to note that since these three
characterizations examine the accuracy of the six techniques

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Percentage of Reference Execution Time

A
cc

ur
ac

y
(M

an
ha

tta
n

D
is

ta
nc

e
of

 C
PI

s)
SimPoint (1-100, X-100, X-10) Reduced (Sm, Md, Tst, Trn)
Run (500, 1000, 1500, 2000) FF+ Run (X: 1000, Z: 100, 500, 1000, 2000)
FF+WU+Run (X+Y: 999+1, Z: 100, 500, 1000, 2000) SMARTS (U: 10000, W: 200, 2000, 2000)

Figure 3. Simulation Speed versus Accuracy Trade-Off Graph of gcc

from different perspectives, the coherency of the results
indicates that the accuracy of each technique is not merely a
coincidental averaging of inaccuracies, but rather an intrinsic
property of the technique. Therefore, although the
conclusions are the same for all three characterizations, this
coherency across all three bolsters the validity of the
conclusions and the efficacy of the characterizations.

6. An Analysis of Speed versus Accuracy Trade-

Off and Potential Configuration Dependence

6.1 Speed versus Accuracy Trade-Off Analysis

It is typically assumed that increased simulation speed
comes at the cost of reduced simulation accuracy such that
the ideal technique minimizes the loss of accuracy while
maximizing the simulation speed. Although accuracy is the
pre-eminent characteristic, speed emerges as an important
consideration when the accuracies of several techniques are
similar.

To accurately determine the speed versus accuracy trade-
off (SvAT) of these techniques, we stipulated that all
simulations run on the same machine to eliminate differences
in the processor, memory sub-system, network, operating
system, etc. Due to the number of simulations (approximately
30,000 for this analysis), all test cases were simulated only
once. Therefore, measurement error could very slightly alter
the results. In total, approximately 50 configurations, which
represent the envelope of the hypercube of potential
configurations, were simulated for each technique.

Figures 3 and 4 present the SvAT graphs of gcc and mcf,
respectively, which were fairly representative of all
benchmarks and were the most interesting. Speed and
accuracy are on the X and Y axes, respectively. The speed of
a technique is simply the total simulation time of that
technique as a percentage of the reference input set’s total

simulation time while the accuracy of that technique is the
Manhattan distance between the CPI vectors of the technique
and the reference input set. (We used the Manhattan
distance instead of the Euclidean distance in this analysis
since it more clearly presented the results.) We included the
cost of generating simulation points (for SimPoint) and
simulation checkpoints (for SimPoint and the truncated
execution techniques) into the simulation speed. (Note:
SimPoint 2.0 [19] dramatically reduces the time needed to
determine the simulation points; it was not available when we
started this study. However, for gcc and mcf, the cost of
generating simulation checkpoints is the dominant non-
simulation cost.) The cost of generating the reduced input sets
and the initial profiling of SMARTS was not included as
these costs were not quantified in [13] and [20], respectively.
However, for SMARTS, the simulation times of the
simulations that did not sample at a high enough frequency,
i.e. required additional simulations, were included in the cost.
(Across all benchmarks, the average number of simulations
for each SMARTS permutation ranged from 1 to 1.59, with a
maximum of 6. Using slightly higher-than-recommended
sampling frequencies can reduce the maximum number of
simulations to about 3 [21].) Including or excluding the cost
of a technique merely moves/stretches the technique’s lines
right or left, respectively. Finally, only the highest accuracy
permutation of each technique is presented for the FF X +
Run Z, FF X + WU Y + Run Z, and SMARTS techniques.
The legend specifies the exact permutation.

The first key conclusion that we draw from these two
figures is that the SvAT of reduced input set and the truncated
execution techniques is very poor. Not only is their accuracy
very poor, their poor accuracy is compounded by long
simulation times. In particular, the train input set has the
worst SvAT since its accuracy ranks towards the bottom and
since its simulation time is significantly longer than any other
technique. Therefore, the reduced input set and truncated

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Percentage of Reference Execution Time

A
cc

ur
ac

y
(M

an
ha

tta
n

D
is

ta
nc

e
of

 C
PI

s)
SimPoint (1-100, X-100, X-10) Reduced (Sm, Lg, Tst, Trn)
Run (500, 1000, 1500, 2000) FF+ Run (X: 4000, Z: 100, 500, 1000, 2000)
FF+WU+Run (X+Y: 3999+1, Z: 100, 500, 1000, 2000) SMARTS (U: 100, W: 200, 2000, 2000)

Figure 4. Simulation Speed versus Accuracy Trade-Off Graph of mcf

execution techniques, from the viewpoints of simulation
accuracy and speed, do not offer any advantages compared to
SimPoint and SMARTS.

It is interesting to note that due to gcc’s highly complex
phase behavior, increasing the detailed simulation period of
the truncated execution techniques does not automatically
confer higher accuracy. Rather, blithely increasing the
simulation period can simultaneously decrease both the
simulation accuracy and speed.

The second key conclusion shown in Figures 3 and 4 is
that, on average, SMARTS is the most accurate technique,
which was one of the key conclusions of Section 5. (The
accuracy of all nine SMARTS permutations was very
similar.) Although the accuracy of SimPoint is not quite as
good as SMARTS, SimPoint has a better SvAT than does
SMARTS, even after including the cost of generating the
simulation points (which is zero if the architect uses those
found on the SimPoint web page) and including the cost of
generating the checkpoints (the cost of which is amortized by
successive runs and can be decreased by picking early
simulation points [16]). Therefore, if the architect’s principal
concern is accuracy, then SMARTS is the most appropriate
technique. However, if the architect is willing to sacrifice a
little accuracy for increased simulation speed (and who isn’t
around deadline time?), then SimPoint is the most appropriate
technique.

In summary, from the perspective of a SvAT, the best
techniques are, listed in descending order of SvAT: SimPoint,
SMARTS, FF X + Run Z, FF X + WU Y + Run Z, Run Z, and
reduced input sets, although there is a large separation
between SimPoint and SMARTS, the two sampling
techniques, and the others.

6.2 Potential Configuration Dependence

Another relevant consideration for architects is how the
accuracy of these techniques changes based on the processor

configuration. The accuracy of the ideal technique will
remain constant across a broad range of configurations. A
predictable and stable accuracy allows trends to emerge from
the noise of error. To quantify the magnitude of this potential
problem, we calculated the percentage error between the CPIs
of each technique and the reference input set and then
determined the frequencies of the CPI error for all
configurations. There is a configuration dependence when
there are a large number of configurations in the higher CPI
error ranges and/or if error does not trend. Figure 5 shows the
percentage of configurations that fell into each range of CPI
errors for that specific permutation across all benchmarks.
For each technique, two permutations, worst (left) and best
(right), are shown. A permutation was selected as the worst or
best when it had the lowest or highest percentage,
respectively, of configurations in the 0% to 3% error range.

Figure 5 shows three key results. First, since the CPI
accuracy of the reduced input set and truncated execution
techniques is extremely poor, both of these types of
techniques have a significant configuration dependence. The
second key result is that SMARTS has virtually no
configuration dependence. Even for the worst permutation, in
almost 80% of all configurations, SMARTS still yields a CPI
value that is within 3% of the actual reference input set
CPI. In the best permutation, this percentage climbs to almost
98%. However, this percentage is slightly less than the target
of 99.7% of the configurations being within ±3% of the
reference input set’s CPI [20]. Nevertheless, given the
“extreme” nature of the configurations – they represent
configurations at the envelope of the hypercube of potential
configurations – we conclude that SMARTS has virtually no
configuration dependence. Finally, for SimPoint, in the worst
permutation, there is a significant configuration dependence
that largely disappears in the best permutation. However,
even in the best permutation, the percentage of configurations
for which the CPI error is greater than 3% is higher than the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-100M
X-10M Test

Large
1500M

500M

1000M+100M

4000M+100M

999M+1M+1000M

3999M+1M+1000M

U:100, W
:200

U:10000, W
:20000

Pe
rc

en
ta

ge
 o

f C
on

fig
ur

at
io

ns

> 30%

27% to 30%

24% to 27%

21% to 24%

18% to 21%

15% to 18%

12% to 15%

9% to 12%

6% to 9%

3% to 6%

0% to 3%

Figure 5. Configuration Dependence: Histogram of CPI Error (Relative to reference) for All Benchmarks

best case for SMARTS.

Although the results in Figure 5 show the frequency of
CPI errors across all benchmarks, we found that the results
presented in Figure 5 were fairly typical for each benchmark
and that no benchmarks were “outliers” in terms of their
frequency of CPI error.

Although the absolute accuracies may not be perfect,
another key question regarding configuration dependence is:
“Is the relative accuracy constant?” For the reduced input set
and truncated execution techniques, the relative accuracy is
not constant, in that the CPI error for these two types of
techniques is not consistently positive or negative. Rather, as
is especially prominent in gcc, for the same permutation,
there are significant numbers of configurations that have CPI
errors that are both less than -27% and greater than 27%.
Therefore, for these techniques, the CPI error does not trend.
For SimPoint and SMARTS, the relative accuracy is quite
good, as least for the most accurate permutation of each
technique. Even for gcc, the CPI error is consistently positive
or negative. This conclusion confirms the results for SimPoint
presented in [16].

In conclusion, the results in this section show that the
reduced input set and truncated execution techniques have
severe configuration dependences because their CPI results
are very inaccurate and the CPI error does not trend. By
contrast, SimPoint and SMARTS have very little, if any,
configuration dependence because the CPI error is generally
small and consistent. From a pure CPI error point-of-view,
however, the accuracy of SMARTS is the best.

7. The Impact of the Simulation Technique on

the Evaluation of Enhancements

The results in Section 5 quantify the accuracy of each

technique relative to the reference input set. What is not
readily apparent, however, is whether there is a correlation
between those differences and the effect a specific technique
has on the simulation results. What is more important is
whether these different techniques would result in different
conclusions when evaluating a new architectural feature. To
empirically determine the correlation between the accuracy of
a technique and the observed simulation results produced
when evaluating an enhancement, we quantify the induced
error due to each technique for two microarchitectural
enhancements, Simplifying and Eliminating Trivial
Computations (TC) [22] and Next-Line Prefetching (NLP)
[12]. We chose these two enhancements since TC targets the
processor core and NLP targets the memory hierarchy.
Furthermore, TC is a non-speculative enhancement while
NLP is speculative.

The results, which are omitted due to space limitations (a
detailed presentation of these results can be found in [24]),
show that there is a distinct correlation between the accuracy
of a technique and the accuracy of its apparent speedup
results. Therefore, the techniques that are very accurate, such
as SimPoint and SMARTS, have apparent speedups that are
very close to the apparent speedup when using the
reference input set. On the other hand, the inaccurate
techniques – reduced input sets and truncated execution –
produce apparent speedups that can be very different than the
apparent speedup of the reference input set; in the worst
case, the apparent speedups of these techniques overestimate
and underestimate the apparent speedup of the reference
input set by up to 100% (e.g. 0% speedup instead of 30%).
What is especially troubling is that the speedups for these
techniques are not consistently higher or lower than the
speedup for the reference input set. This lack of
consistency precludes the prospect of accounting for the

magnitude and the direction (positive or negative) of the error
when examining speedup results. These differences are solely
attributable to the fundamental inaccuracy of these techniques
when they are compared to the reference input set.

8. Related Work

Although we found several papers that were somewhat
related to this paper, we did not find any papers that
comprehensively evaluated the accuracy of all techniques.
The papers that did evaluate the accuracy of techniques did so
in the context of comparing the results of a new technique to
the results when using the reference input set. The most
relevant related work falls into two categories: simulation
methodology and simulator validation.

Simulation Methodology: Yi et al. [23] proposed using a
PB design as a means of introducing statistical rigor into
simulation methodology. More specifically, they used a PB
design to identify the most significant parameters to help
choose parameter values, to select a statistically different set
of benchmarks, and to measure the effect that an
enhancement has on the processor. The first two applications
attempt to improve the simulation setup phase while the last
application improves the analysis phase.

Eeckhout et al. [8] used statistical data analysis
techniques to determine the statistical similarity of
benchmark and input set pairs. To quantify the similarity,
they used metrics such as instruction mix, branch prediction
accuracy, cache miss rates, number of instructions in a basic
block, and maximum amount of parallelism inherent to the
benchmark. After characterizing each benchmark with these
metrics, they used statistical techniques such as principal
component and cluster analysis to cluster the benchmarks and
input set pairs together.

Simulator Validation: Black and Shen [1] iteratively
improved the accuracy of their performance model by
comparing the cycle count of their simulator, which targeted a
specific architecture, against the cycle count of the actual
hardware. Their results show that modeling, specification,
and abstraction errors were still present in their simulation
model, even after a long period of debugging. Their work
showed the need for extensive, iterative validation before the
results from a performance model can be trusted.

Desikan et al. [7] measured the amount of error, as
compared to the Alpha 21264 processor, that was present in
an Alpha version of the SimpleScalar simulator. Their results
showed that the simulators that model a generic machine (i.e.
non-specific machine, such as SimpleScalar) generally report
higher IPCs than simulators that are validated against a real
machine. On the other hand, unvalidated simulators that
targeted a specific machine underestimated the performance.

Gibson et al. [9] described the types of errors that were
present in the FLASH simulator when compared to the
custom-built FLASH multi-processor system. To determine
which errors were present in the FLASH simulator, they
compared the simulated execution time from the FLASH
simulator against the actual execution time of the FLASH
processor. Their results showed that the margin of error (the
percentage difference in the execution time) of some

simulators was more than 30%, which is higher than the
speedups that are often reported for specific architectural
enhancements.

9. Recommendations

Based on the results of the three characterization
methods, the speed versus accuracy trade-off, and the
configuration dependence analysis, we make the following
recommendations for performing simulation-based
architecture studies.

Recommendation #1: Improve the documentation of
simulation methodologies. From our survey of simulation
methodologies, the number of unknown techniques accounted
for half of all papers over the last ten years, and
approximately one-third of the papers in recent years.
Inadequately documenting how the results were obtained
prevents other researchers from verifying those results or
building upon them. More importantly, results that are
presented without adequate documentation or justification of
the simulation methodology may be considered to be suspect.

Recommendation #2: Sampling-based simulation
techniques, such as SimPoint and SMARTS, should be used
when the goal is to get reference-like results. Simulation
with reduced input sets should be viewed as using a
completely different benchmark program than what is
obtained when using the reference input set. Given its
generally low level of accuracy, the truncated execution
technique should not be used since any conclusions that are
drawn from the results using this technique may simply be a
figment of the technique, rather than a bona fide effect. Due
to the very high levels of accuracy and their very low
simulation times, we highly recommend that sampling-based
techniques – as epitomized by SimPoint and SMARTS – be
used instead. While this may seem to be an intuitively
obvious recommendation, the fraction of papers that used
reduced input sets or truncated execution techniques actually
increased from 68.9% in the eight years prior to the
introduction of SimPoint, to 82.1% in the conferences that
occurred after SimPoint was introduced. Finally, benchmarks
from old benchmark suites should not be used unless there is
compelling reason to do so; especially so since SimPoint and
SMARTS are both fast and accurate. In our survey, we found
a surprising number of papers that used benchmarks that were
more than five years old. (So as not to sound too preachy, we
would like to point out that we have been guilty of some of
these problems ourselves.)

Recommendation #3: Suggestions for selecting a
simulation technique. Based on the results presented in the
previous three sections and from our experience in this study,
Figure 6 presents the detailed ordering of the six techniques
for several different categories. The Technical Factors branch
orders the techniques based on the conclusions from the three
characterizations (performance bottleneck, execution profile,
and architectural metrics), the speed versus accuracy trade-
off, and the configuration dependence analysis.

The Complexity to Use category reflects the complexity
of the changes that are needed to support that technique.
Since the reduced input sets do not require any changes, they

Figure 6. Decision Tree for the Selection of a Simulation Technique

have the lowest complexity to use. SMARTS has the highest
complexity to use since it requires changes to the simulator to
support periodic sampling, functional warming, and statistical
calculations. The other four techniques have a medium
complexity of use because they could require minor changes
to the simulator to support fast-forwarding, warm-up, and
early termination. The Cost to Generate category is the
amount of effort that is needed “create” each technique. Since
SimPoint requires minimal user intervention to find a
benchmark’s simulation points, it has the lowest cost. Note,
however, that for some compiler-based studies, the architect
may need to repeatedly generate new simulation points to
reflect the status of various levels of code optimization. On
the other end of the spectrum, SMARTS and reduced input
sets have the highest costs to generate since new SMARTS
parameters (U, W) may need to be found or new reduced
input sets need to be created for each benchmark suite.

The Processor Component Analysis branch orders the
techniques based on how similar their performance
bottlenecks are within each of the processor’s major
components (i.e. Instruction Fetch, Execute, and Memory
Hierarchy). After eliminating the parameters that are less
significant than the dummy parameters (i.e. noise), we then
compute the Euclidean distance between each technique and
the reference input set. Then, to facilitate comparisons
across techniques and components, we divide the Euclidean
distance by the number of significant parameters in the
reference input set. By focusing on specific components,
this analysis determines which techniques should be used for
which components.

While these results confirm the results obtained in the

previous sections, there are some interesting results. For each
of the three components and each benchmark, SMARTS and
SimPoint show the best behavior. For gzip, equake and vpr-
Route, Run Z is not appropriate for any of the components
and therefore should not be used. Reduced input sets are not
appropriate when focusing on Instruction Fetch and Memory
Hierarchy parameters for gcc and vpr-Place. On the other
hand, for gzip, the reduced input sets are as accurate as
SimPoint and SMARTS.

In summary, for different processor components and for
a particular benchmark, the accuracy of a technique with
respect to the others may change. However, SimPoint and
SMARTS are the best overall techniques.

10. Conclusion

With the advent of popular execution-driven simulators
such as SimpleScalar, simulating the reference input set
of a SPEC 2000 benchmark to completion is not an option for
most computer architects. Consequently, architects have
proposed several alternative simulation techniques with the
intent of decreasing the simulation time. Prevailing and
emerging techniques fall into the categories of: 1) Reduced
input sets, 2) Truncated execution, and 3) Sampling. In this
paper, we characterized the accuracy of the MinneSPEC and
SPEC reduced input sets; Run Z, FF X + Run Z, and FF X +
WU Y + Run Z from the truncated execution category; and
SimPoint and SMARTS from the sampling category.

We used three characterizations to determine the
accuracy of each technique, with respect to the reference
input set. First, we used the statistical Plackett and Burman

design to perform a performance bottleneck characterization
of each technique. Second, we performed an execution profile
analysis by tallying the basic block execution frequencies and
instruction counts. Third, we used several architectural
performance metrics as the final characterization method.
After evaluating accuracy of these techniques with the
previous three characterizations, we evaluated the speed
versus accuracy trade-off and the potential configuration
dependence of each technique. Finally, we then showed how
the induced error of each technique can affect the
performance of two microarchitectural enhancements.

To evaluate the accuracy, speed versus accuracy,
configuration dependence, and the apparent effect on the
speedup for the 69 permutations of the techniques for 10
benchmarks, we simulated over 1015 detailed instructions,
which required about 40 CPU-years of simulation time.

Our results lead to several important conclusions. First,
the accuracy of the reduced input set and truncated execution
techniques was very poor for all three characterizations and
the poor accuracy of these two techniques is not offset by
faster simulation speed, which further diminishes their utility.
Second, these two techniques have significant configuration
dependences because they have a high frequency of large CPI
errors and because the CPI error does not trend. Third, as a
result of these inaccuracies, the speedup results for these
techniques does predictably trend.

Fourth, our results showed that, for all three
characterizations and for the configuration dependence
analysis, SimPoint and SMARTS are both very accurate
techniques. Fifth, while SMARTS is slightly more accurate,
SimPoint has a better speed versus accuracy trade-off.
Finally, the most accurate permutation of both techniques
produces very accurate estimates of the apparent speedup.

The final contribution of this paper is a decision tree to
help architects choose the most appropriate technique(s)
across on a wide range of categories.

Acknowledgments

We would like to especially thank B. Calder, R.
Wunderlich, J. Lau, and M. Van Biesbrouck for answering
our many SimPoint and SMARTS related questions. We
would also like to thank B. Calder, Y. Chen, L. Eeckhout, C.
Hescott, B. Kazar, J. Lin, K. Osowski, M. Tobin, H.
Vandierendonck, K. Wu, and R. Wunderlich for their helpful
comments on previous drafts of this work; B. Kochie and B.
Runesha for their help and infinite patience in helping us
finish our simulations; and to J. Lin, V. Packirisamy, K.
Yellajyosula, and P. Yew for helping us set-up our
simulations and allowing us to monopolize their computers.

This work was supported in part by National Science
Foundation grants CCR-9900605 and EIA-9971666, the IBM
Corporation, and the Minnesota Supercomputing Institute.

References

 [1] B. Black and J. Shen, “Calibration of Microprocessor

Performance Models”, IEEE Computer, Vol. 31, No. 5, May
1998, Pages 59-65.

[2] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version
2.0”, University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, 1997.

[3] D. Brooks et al., “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations”, International
Symposium on Computer Architecture 2000.

[4] B. Calder et al., Personal Communications.
[5] D. Citron, “MisSPECulation: Partial and Misleading Use of

SPEC CPU2000 in Computer Architecture Conferences”, Panel
Discussion in International Symposium on Computer
Architecture 2003.

[6] T. Conte et al., “Reducing State Loss for Effective Trace
Sampling of Superscalar Processors”, International Conference
on Computer Design, 1996.

[7] R. Desikan et al., “Measuring Experimental Error in
Microprocessor Simulation”, International Symposium on
Computer Architecture, 2001.

[8] L. Eeckhout et al., “Workload Design: Selecting Representative
Program-Input Pairs”; International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[9] J. Gibson et al., “FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop”, International Conference on Architectural
Support for Programming Languages and Operating Systems,
2000.

[10] G. Hamerly et al., “How to Use SimPoint to Pick Simulation
Points”, ACM SIGMETRIC Performance Evaluation Review,
2004.

[11] J. Henning, “SPEC CPU2000: Measuring CPU Performance in
the New Millennium”, IEEE Computer, Vol. 33, No. 7, July
2000; Pages 28-35.

[12] N. Jouppi, "Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-associative Cache and Prefetch
Buffers," International Symposium on Computer Architecture,
1990.

[13] A. KleinOsowski and D. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer
Architecture Research”, Vol. 1, June 2002.

[14] P. Levy and S. Lemeshow, “Sampling of Populations: Methods
and Applications”, John Wiley and Sons, 1999.

[15] D. Lilja, “Measuring Computer Performance”, Cambridge
University Press, 2000.

[16] E. Perelman et al., “Picking Statistically Valid and Early
Simulation Points”, International Conference on Parallel
Architectures and Compilation Techniques, 2003

[17] R. Plackett and J. Burman, “The Design of Optimum
Multifactorial Experiments”, Biometrika, Vol. 33, Issue 4, June
1946, Pages 305-325.

[18] T. Sherwood et al., “Automatically Characterizing Large Scale
Program Behavior”, International Conference on Architectural
Support for Programming Languages and Operating Systems,
2002.

[19] http://www.cs.ucsd.edu/~calder/simpoint
[20] R. Wunderlich et al., “SMARTS: Accelerating

Microarchitectural Simulation via Rigorous Statistical
Sampling”, International Symposium on Computer
Architecture, 2003.

[21] R. Wunderlich, Personal Communications.
[22] J. Yi and D. Lilja, “Improving Processor Performance by

Simplifying and Bypassing Trivial Computations”,
International Conference on Computer Design, 2002.

[23] J. Yi et al., “A Statistically-Rigorous Approach for Improving
Simulation Methodology”, International Symposium on High-
Performance Computer Architecture, 2003.

[24] J. Yi et al., “Characterizing and Comparing Prevailing
Simulation Techniques”, ARCTiC Technical Report 04-06,
2004.

