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Abstract 

 
Due to the simulation time of the reference input set, 

architects often use alternative simulation techniques. 
Although these alternatives reduce the simulation time, what 
has not been evaluated is their accuracy relative to the 
reference input set, and with respect to each other. To 
rectify this deficiency, this paper uses three methods to 
characterize the reduced input set, truncated execution, and 
sampling simulation techniques while also examining their 
speed versus accuracy trade-off and configuration 
dependence. Finally, to illustrate the effect that a technique 
could have on the apparent speedup results, we quantify the 
speedups obtained with two processor enhancements. The 
results show that: 1) The accuracy of the truncated execution 
techniques was poor for all three characterization methods 
and for both enhancements, 2) The characteristics of the 
reduced input sets are not reference-like, and 3) SimPoint 
and SMARTS, the two sampling techniques, are extremely 
accurate and have the best speed versus accuracy trade-offs. 
Finally, this paper presents a decision tree which can help 
architects choose the most appropriate technique for their 
simulations. 
 
1.  Introduction 
 

The SPEC 2000 benchmark suite [11] is the current de 
facto standard for simulation-based computer architecture 
research. The largest input set for each benchmark in this 
suite is called the reference input set. Although this input 
set typically yields the most realistic behavior, it is rarely 
simulated to completion due to its very long simulation time. 

Since these lengthy simulation times preclude a detailed 
exploration of the design space, computer architects resort to 
alternative simulation techniques to reduce the simulation 
time. These techniques include: reducing the size of the input 
set, simulating a piece of the program that is presumed to be 
representative of the whole program, and sampling. Although 

these techniques reduce the simulation time, what is not clear 
is how the characteristics and the accuracy of each technique 
compare to the reference input set and to each other. 
Without thoroughly understanding the effects that these 
techniques can have on the results, the validity of those 
results is suspect, which nullifies the point of performing the 
simulations in the first place. 

To address this issue, this paper evaluates the accuracy 
of the six most prevalent techniques – with respect to the 
reference input set – by characterizing them using three 
different methods. The six techniques are: 1) SimPoint [18], 
2) Reduced input sets (MinneSPEC [13] and SPEC test and 
train), 3) Simulating the first Z million instructions only, 
4) Fast-forwarding X million instructions and then simulating 
the next Z million, 5) Fast-forwarding X million, warming-up 
the processor for the next Y million, and then simulating the 
next Z million instructions, and 6) SMARTS, which is a 
rigorous, statistically-based sampling technique [20]. The 
three methods used to characterize these techniques are the: 
A) Processor bottleneck, B) Execution profile, and C) 
Architectural Level characterizations. After determining the 
accuracy of these techniques using these characterizations, we 
then analyze each from three additional perspectives, namely: 
their speed versus accuracy trade-off, potential configuration 
dependence, and the fidelity of their performance bottlenecks. 
Finally, this paper quantifies the effect that these techniques 
can have on the execution time for two microarchitectural 
enhancements – simplifying and eliminating trivial 
computations [22], and next-line prefetching [12]. The 
purpose of these comparisons is to determine the effect that 
each technique’s inaccuracies could have on the apparent 
speedup of an enhancement, as compared to the actual 
speedup when using the reference input set. 

The contributions of this paper are as follows: 
 

1. It characterizes the accuracy of the six most 
popular techniques, with respect to the 
reference input set, at the hardware, 
software, and architectural levels. 



 

2. It compares the speed versus accuracy trade-off 
of each technique. 

3. It examines the potential configuration 
dependence of each technique. 

4. It shows how the induced error of each 
technique can affect the apparent performance 
improvement of two enhancements. 

5. It presents a decision tree to help architects 
choose the technique that is best for their 
simulations. 

 
The remainder of this paper is organized as follows: 

Section 2 describes the problem, in addition to describing 
each of the six techniques. Descriptions of the experimental 
framework and each characterization method are given in 
Sections 3 and 4, respectively, while the simulation results 
are given in Sections 5, 6, and 7. Section 8 describes some 
related work. Section 9 makes specific recommendations 
about simulation methodology and Section 10 concludes. 
 
2.  Prevailing Simulation Techniques 
 

To reduce the simulation time to a tractable level, several 
techniques are commonly used to approximate the behavior 
of the reference input set. These techniques fall into three 
categories: 1) Reduced input sets, 2) Truncated execution, and 
3) Sampling. 

Reduced Input Sets: The basic idea behind reduced input 
sets is to modify the reference input set in some way to 
reduce the simulation time when using the modified input set. 
The hope is that the reduced input set still retains the 
characteristics of the reference input set, but with a lower 
simulation time. The primary advantage of using reduced 
input sets is that the entire behavior of the program is 
simulated in detail, including: initialization, the main body of 
the computation, and cleanup. The main disadvantage is that 
their results may be very dissimilar compared to those 
produced by the reference inputs. In addition, developing 
reduced input sets can be a very tedious and time-consuming 
process. Examples of SPEC 2000 reduced input sets include 
the test and train input sets from SPEC, and the 
MinneSPEC small, medium, and large reduced input 
sets [13]. 

Truncated Execution: In truncated execution, the 
benchmark is simulated for a fixed number of instructions 
while presuming that that arbitrary sample is representative of 
the entire program. There are three primary variations. In the 
simplest case, which we call Run Z, only the first Z million 
instructions of the benchmark are simulated using the 
reference input set, where the value of Z determines the 
simulation time. A variation on this idea is to fast-forward 
through the first X million instructions and then switch to 
detailed simulation for the next Z million (i.e. Fast-Forward 
X + Run Z or FF X + Run Z). This technique potentially 
improves on Run Z by skipping over the less interesting 
aspects of the program. One problem with FF X + Run Z is 
that, after fast-forwarding, the processor and memory states 
are “cold” (i.e. invalid). The solution to this problem is to 

“warm-up” the processor and memory before starting detailed 
simulation. One simple implementation is to perform detailed 
simulation for Y + Z million instructions after fast-forwarding 
while tracking the simulation statistics for only the last Z 
million. We refer to this technique as Fast-Forward X + 
Warm-Up Y + Run Z (FF X + WU Y + Run Z). 

Sampling: Population sampling is a statistical technique 
that is used to infer the characteristics of the population by 
extrapolating from the characteristics observed in a subset 
[14]. The key to good results with population sampling is to 
ensure that the subset chosen accurately reflects the overall 
population. Three primary sampling techniques have been 
proposed for use in computer architecture research studies – 
representative, periodic, and random sampling. 

Representative sampling attempts to extract from a 
benchmark a subset of its dynamic instructions that matches 
its overall behavior when using the reference input set. 
With the SimPoint [18] technique, for example, a relatively 
small number of simulation points are chosen to be 
representative of the behavior of the entire program. 
Determining the simulation points first involves profiling the 
benchmark to identify the candidate simulation points and 
then using statistically-based clustering to select a set that is 
representative of the entire program. After simulation, the 
results from each simulation point are weighted to compute 
the final simulation results. The number of simulation points 
and the length of each determines the overall simulation time. 

By contrast, periodic sampling simulates selected 
portions of the dynamic instruction execution at fixed 
intervals. The sampling frequency and the length of each 
sample are used to control the overall simulation time; 
SMARTS (Sampling Microarchitectural Simulation) [20] is a 
recent example. To improve its accuracy, SMARTS uses 
statistical sampling theory to estimate the CPI error of the 
sampled simulation versus the reference simulation. If the 
estimated error is higher than the user-specified confidence 
interval, then SMARTS recommends a higher sampling 
frequency. SMARTS also uses “functional warming” to 
maintain branch predictor and cache state. 

Finally, in random sampling, the simulation results from 
N randomly chosen and distributed intervals are combined 
together to produce the overall simulation results. To reduce 
the error associated with random sampling, Conte et al. [6] 
suggested increasing the number of instructions dedicated to 
processor warm-up before each sample and/or increasing the 
number of samples. 

Prevalence of Simulation Techniques: In addition to 
simulating the reference input set to completion and the 
above techniques, a multiplicity of additional permutations 
exist. For obvious reasons, quantifying the accuracy of all 
permutations is infeasible. Therefore, to determine the set of 
techniques to analyze in this paper, we examined the last ten 
years of HPCA, ISCA, and MICRO to determine the most 
prevalent techniques. Our results show that the four most 
popular techniques are: FF X + Run Z (27.3% of all known 
techniques), Run Z (23.1%), Reduced input sets (18.5%), and 
simulating the benchmark to completion (17.8%). Since these 
four techniques account for almost 90% of all known



 

Table 1. The Final Specifics of the Candidate Simulation Techniques (Note: X+Y Mod 100M = 0) 
 

Number of Permutations Technique Permutations 

3 SimPoint 
(Standard) 

Single 100M, Multiple 10M (max_K: 100) and 100M (max_K: 10) 
SimPoint 1.0, 7 Random Seeds (seedproj = 1), 100 iterations 
Warm-Up: Assume cache hit; 1M for 10M, 0M for 100M [10] 

9 SMARTS 

Detailed Simulation Length per Sample (U): 100, 1000, 10000 
Warm-Up Length per Sample (W): 200, 2000, 20000 
Initial Number of Samples (n): 10,000 
Configuration: 99.7% Confidence Level, ±3% Confidence Interval [20]] 
MinneSPEC small, medium, large 

3-5 Reduced 
SPEC test, train 

4 Run Z Z: 500M, 1000M, 1500M, 2000M 
X: 1000M, 2000M, 4000M 12 FF X + 

Run Z Z: 100M, 500M, 1000M, 2000M 
X: 999M, 1999M, 3999M; 990M, 1990M, 3990M, 900M, 1900M, 3900M 
Y: 1M; 10M, 100M 36 

FF X + 
WU Y + 
Run Z Z: 100M, 500M, 1000M, 2000M 

 
 
techniques, we included these four techniques in the set of 
candidate techniques studied in this paper. By contrast, we 
excluded random sampling since it was rarely used, despite it 
being a fairly well-known technique. We also included 
SimPoint and SMARTS in our final set since they are likely 
in increase in frequency. Finally, we included FF X + WU Y + 
Run Z, since it is a more accurate version of FF X + Run Z. 
Table 1 shows our final list of the 69 permutations of the 
candidate techniques. The values of X, Y, and Z were based 
on the superset of common permutations that we found in our 
survey. The specific values for SimPoint and SMARTS were 
based on those from [4, 10, 18, 20, 21]. 
 
3. Experimental Framework  
 

In this paper, we used wattch [3] as the base simulator. 
We modified wattch to include: user-configurable 
instruction execution latencies and throughputs, and a user-
configurable warm-up. To implement SMARTS, we added 
periodic sampling, functional warming, and statistical error 
estimation to wattch. 

To characterize the accuracy of each technique, we used 
a total of 56 different processor configurations. Since these 
configurations are associated with a specific characterization 
method, the configurations are listed in Sections 4.1 and 4.3 
along with its method. 

The 10 benchmarks that were used in this study, shown 
in Table 2 along with their input sets, were selected from the 
SPEC 2000 benchmark suite because they are all written in C 
and because these benchmarks represent the most popular 
benchmarks that architects typically use [5]. The total 
simulation time limited the number of benchmarks that we 
could simulate. Even then, to simulate the reference input 
set and the 69 permutations in Table 1 for 56 configurations 
and 10 benchmarks required the simulation of over 1 
quadrillion (1015) detailed instructions, which required 
approximately 40 CPU-years. All benchmarks were compiled 

at optimization level O3 using SimpleScalar’s version of the 
gcc compiler, version 2.6.3. With the exception of the 
reduced input sets, the input set for all techniques was the 
reference input set, or one of the reference input sets 
when more than one was available.  
 
4. Description of the Characterization Methods 
 

To measure the accuracy of each technique, we used 
three different characterization methods. Section 4 describes 
these methods, while Section 5 presents the results of each. 
 
4.1. Processor Bottleneck Characterization 
 

The first characterization method is a performance 
bottleneck analysis using a Plackett and Burman design [17], 
or PB design. For architects, the PB design can determine 
which processor and memory parameters have the largest 
effect on the performance, i.e. are the biggest performance 
bottlenecks. The output of a PB design is a value that is 
associated with each input parameter. The magnitude of this 
number represents the effect that that parameter has on the 
variability in the output value, e.g. number of cycles. The 
parameters with the largest PB magnitudes have the largest 
effect on the number of cycles, and represent the largest 
performance bottlenecks in the processor and memory sub-
system. 

After calculating the effect that each parameter has on 
the CPI, we rank the parameters based on their PB 
magnitudes (1=Largest magnitude) and then vectorize the 
ranks. To determine the similarity in the performance 
bottlenecks of the reference input set and each technique, 
we calculate the Euclidean distance between the two rank 
vectors. Therefore, the technique that has the smallest 
Euclidean distance is the one that is the most accurate, i.e. has 
the set of performance bottlenecks that is most similar to 
those of the reference input set. (It is important to note



 

Table 2. SPEC 2000 Benchmarks and Input Sets 
 
Benchmark small medium large test train reference 

gzip smred.log mdred.log lgred.log test.combined train.combined ref.log 
vpr-Place 
vpr-Route 

smred.net 
small.arch.in 

mdred.net 
small.arch.in N/A test.net 

small.arch.in 
train.net 

train.arch.in 
ref.net 

ref.arch.in 
gcc smred.c-iterate.i mdred.rtlanal.i N/A cccp.i cp-decl.i 166.i 
art N/A N/A    -startx 110 
mcf smred.in N/A lgred.in test.in train.in ref.in 

equake N/A N/A lgred.in test.in train.in ref.in 
perlbmk smred.makerand mdred.makerand N/A N/A scrabbl diffmail 
vortex smred.raw mdred.raw lgred.raw test.raw train.raw lendian1.raw 
bzip2 N/A N/A lgred.source test.random train.compressed ref.source 

 
Table 3. Processor Configurations Used for the Architectural Level Characterization 

 
Parameter Config #1 Config #2 Config #3 Config #4 

Decode, Issue, Commit Width 4-Way 8-Way 
Branch Predictor, BHT Entries Combined, 4K Combined, 8K Combined, 16K Combined, 32K 

ROB/LSQ Entries 32/16 64/32 128/64 256/128 
Int/FP ALUs (Mult/Div Units) 2/2 (1/1) 4/4 (4/4) 6/6 (4/4) 8/8 (8/8) 

L1 D-Cache Size (KB), Assoc, Lat (Cycles) 32, 2-Way, 1 64, 4-Way, 1 128, 2-Way, 1 256, 4-Way, 1 
L2 Cache Size (KB), Assoc, Lat (Cycles) 256, 4-Way, 10 512, 8-Way, 7 1024, 4-Way, 15 2048, 8-Way, 12 
Memory Lat (Cycles): First, Following 150, 10 100, 5 300, 20 200, 10 

 
 
that we verified that using ranks did not significantly distort 
the results, as compared to using the PB magnitudes. Rather, 
using ranks prevented single parameters from dominating the 
results, which allowed less significant parameters to have 
some, limited, effect.)  

Finally, our set of processor and memory parameter 
values is similar to those found in [22].  
 
4.2. Execution Profile Characterization 
 

If the PB design is a hardware-level characterization, 
then its software-level counterpart is the basic block 
characterization. We characterize the basic blocks based on 
their execution frequencies (BBEF) and their instruction 
counts (BBV in SimPoint terminology). In this paper, we 
define a basic block to be the group of instructions between a 
branch target (taken or not taken) up to the next branch. The 
BBEF is simply the number of times that each basic block is 
executed. By comparing the BBEF profiles for the 
reference input set and each technique, we can determine 
how accurate that technique is, in terms of code coverage. 
The BBV is similar to BBEF except that, instead of 
incrementing the count by one each time a basic block is 
executed, we increment that basic block’s counter by the 
number of instructions that were executed in that instance of 
that basic block. This characterization factors in the number 
of instructions in each basic block. 

We use a χ2 test [15] to compare the distributions of the 
reference input set and each technique. If the χ2 test value 
is smaller than the χ2 statistic, then the two distributions are 
considered to be statistically similar. We also use the χ2 test 

value as a measure of the distance between the two 
distributions; similar distributions will have a very small χ2 
test value. 
 
4.3. Architecture Level Characterization 
 

The last characterization method that we used to 
compare techniques is at the architectural level. We first 
vectorize a set of metrics (IPC, branch prediction accuracy, 
L1 D-Cache hit rate, and L2 Cache hit rate), after normalizing 
each metric to allow for cross-metric comparisons, and then 
calculate its Euclidean distance from the reference input 
set. We included this characterization since these metrics are 
often used by architects to evaluate their enhancements. 
However, the principal deficiency of using architectural level 
metrics is that, since they average the effect of all factors over 
time to produce a single number, the effects of larger 
interactions may counterbalance each other while obscuring 
the effects of lower-order interactions. Table 3 lists the key 
parameter values for the four configurations used for the 
architecture level characterization. These parameter values 
were chosen based on a survey of several commercial 
processors. 
 
5. Results of Characterization Methods 
 

The next three sections present the results of our analysis 
of the accuracy and simulation speed for the six techniques 
specified in Section 2. Section 5 presents the results for the 
three characterization methods while Section 6 describes the 
speed versus accuracy trade-off of each and the potential 
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Figure 1. The Normalized Euclidean Distance Away from the reference Input Set for Each Type of Simulation 

Technique for the Performance Bottleneck Characterization. For Each Technique, the Average (Mean) 
Distance is Shown Along with the Minimum and Maximum Distance (Error Bars). 

 
 
configuration dependence that each of these techniques could 
have. Finally, in Section 7, we illustrate how the inaccuracies 
of each technique can affect the apparent speedup results 
when evaluating a processor enhancement and a memory 
hierarchy enhancement. 
 
5.1. Processor Bottleneck Characterization Results 

and Analysis 
 

Since the number of elements in each vector of ranks is 
43, and since the value of each element is a number between 
1 and 43, the maximum Euclidean distance between two 
vectors occurs when the ranks for the two vectors are 
completely “out-of-phase”, i.e. <43, 42, 41, … 3, 2, 1> versus 
<1, 2, 3, … 41, 42, 43>); this distance is 162.75. Figure 1 
presents the average distance for each type of technique, 
normalized to the maximum distance and scaled to 100.  

Across all benchmarks, the accuracy of the reduced input 
sets varies significantly. In general, the poor accuracy (large 
distance) of the reduced input sets is due to two reasons. First, 
especially in the case of mcf, the percentage of cycles due to 
cache misses serviced by main memory is much larger for the 
reference input set than in any of the reduced input sets. 
Consequently, we expect – and find – that the reduced input 
sets tend to underestimate the rank of the memory hierarchy-
related parameters. For example, in gcc, the rank of the 
memory latency for the reference input set is 3 while its 
rank for the SPEC test reduced input set is 41. Second, our 
results for the basic block analysis, presented in Section 5.2, 
show that the execution profiles of the reduced input sets and 
the reference input set are very different. In other words, 
using a reduced input set effectively simulates a different 
program than when using the reference input set.  

With the exceptions of vpr-Place and art, the accuracy of 

the truncated execution techniques (i.e. Run Z variants) is 
also quite poor. Although the distances for FF X + Run Z and 
FF X + WU Y + Run Z are lower than the distances for Run 
Z, the reasons for the poor accuracy of these techniques is the 
same. First, since the values of X, Y, and Z are chosen 
arbitrarily, these three techniques simulate a portion of the 
program that not only may be uninteresting, but that may also 
be unrepresentative of the entire benchmark. Second, given 
the highly complex phase behavior of some of these 
benchmarks – gcc is an excellent example – simulating a few 
billion instructions, even after fast-forwarding through a few 
billion instructions, does not simulate enough phases of the 
program to elicit a similar set of performance bottlenecks. 
However, increasing the period of detailed simulation reduces 
the appeal of this class of techniques by increasing its 
simulation time. 

In general, there is a very small distance between 
SimPoint or SMARTS and the reference input set, in 
terms of their performance bottlenecks. At the very least, the 
distances for these two techniques are much lower than that 
of the other techniques. Overall, SMARTS is slightly more 
accurate than SimPoint since, for 6 of the 10 benchmarks, the 
minimum distance for SMARTS is lower than the minimum 
distance for SimPoint (In terms of the average distance, 
SMARTS is smaller for 5 benchmarks.) 

It is important to note that large differences in the ranks 
for parameters that are not significant can increase the 
apparent distance for a technique. To examine if this is the 
case, Figure 2 shows the difference in the SimPoint and 
SMARTS distances, with respect to the reference input 
set, i.e. ||SimPoint – reference|| – ||SMARTS – 
reference||. Figure 2 only shows the results for the most 
accurate (smallest Euclidean distance) permutation. 
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Figure 2. Difference in the SimPoint and SMARTS Euclidean Distances in Ascending Order of Rank 
 
 

The parameters along the X-axis are sorted in ascending 
order of reference input set rank for each benchmark. 
Therefore, the same index in different benchmarks may 
correspond to different parameters. This plotting allows us to 
examine the effect of each parameter in decreasing order of 
significance in each benchmark. The difference in the 
distances for parameter N is the difference in the distances 
when only the N most significant parameters are included in 
the distance calculations. 

For all benchmarks except for gcc, there is very little 
difference between the Euclidean distances for SimPoint and 
SMARTS, at least for the most significant parameters. 
Therefore, we conclude that for these benchmarks, with the 
exception of mcf, SMARTS is slightly more accurate than 
SimPoint; for mcf, SimPoint is slightly more accurate than 
SMARTS. For gcc, there is a difference in the Euclidean 
distances starting at parameter 3 (memory latency) because 
SimPoint underestimates the significance of the memory 
latency for this benchmark. This is due to the fact that gcc has 
very complex phase behavior and that for this specific 
SimPoint configuration (multiple 10M simulation points), 
phase transitions are typically not chosen to be simulation 
points [4], which subsequently underestimates the effect of 
the memory latency. However, increasing the maximum 
number of simulation points, e.g. using 1M simulation points 
with a max_K of 300, can minimize this problem. 

In conclusion, the results in this section show that the 
reduced input set and truncated execution techniques are very 
inaccurate compared to the results obtained by the 
reference input set. By contrast, SimPoint and SMARTS 
are both very accurate techniques, although SimPoint slightly 
underestimates the effect of the memory latency in gcc. 

 
5.2. Execution Profile and Architectural Level 

Characterization Results and Analysis 
 

In this section, we examine how the techniques compare 

to the reference input set when using the execution 
profile and architectural level characterizations. Since the 
results from both of these characterizations are fully coherent 
with those presented in the previous section, and due to space 
limitations, we omit tables of these results. Furthermore, 
since the results of the BBEF and BBV are virtually identical, 
we discuss only the results of the BBV characterization. 

For the execution profile characterization, the results 
show that almost all permutations for all techniques executed 
a statistically similar set of basic blocks as the reference 
input set executed. However, the reason that the execution 
profiles for almost all permutations were statistically similar 
is because there were an extremely large number of basic 
blocks for the reference input set which results in a very 
large χ2 statistic. That being stated, the results from this 
characterization show that the reduced input set and truncated 
execution techniques still have very different execution 
profiles than the reference input set. This result is not 
surprising since truncated execution simulates a small portion 
of the program and since reduced input sets do not simulate 
the same pieces of the benchmark at the same frequencies as 
the reference input set. On the other hand, the execution 
profiles for SMARTS and SimPoint are very similar to that of 
the reference input set, although SMARTS is more 
similar. 

The conclusions from the results of the architectural 
level characterization are the same as the conclusions from 
the performance bottleneck and the execution-profile 
characterizations. Namely, the reduced input set and 
truncated execution techniques yield very different 
architectural metrics than does the reference input set 
while the architectural metrics for SimPoint and SMARTS 
are much more similar. These results, of course, are not 
surprising given the results of the other two characterizations. 

It is extremely important to note that since these three 
characterizations examine the accuracy of the six techniques



 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Percentage of Reference Execution Time

A
cc

ur
ac

y 
(M

an
ha

tta
n 

D
is

ta
nc

e 
of

 C
PI

s)
SimPoint (1-100, X-100, X-10) Reduced (Sm, Md,  Tst, Trn)
Run (500, 1000, 1500, 2000) FF+ Run (X: 1000, Z: 100, 500, 1000, 2000)
FF+WU+Run (X+Y: 999+1, Z: 100, 500, 1000, 2000) SMARTS (U: 10000, W: 200, 2000, 2000)

 
 

Figure 3. Simulation Speed versus Accuracy Trade-Off Graph of gcc 
 
 
from different perspectives, the coherency of the results 
indicates that the accuracy of each technique is not merely a 
coincidental averaging of inaccuracies, but rather an intrinsic 
property of the technique. Therefore, although the 
conclusions are the same for all three characterizations, this 
coherency across all three bolsters the validity of the 
conclusions and the efficacy of the characterizations. 
 
6. An Analysis of Speed versus Accuracy Trade-

Off and Potential Configuration Dependence 
 
6.1 Speed versus Accuracy Trade-Off Analysis 
 

It is typically assumed that increased simulation speed 
comes at the cost of reduced simulation accuracy such that 
the ideal technique minimizes the loss of accuracy while 
maximizing the simulation speed. Although accuracy is the 
pre-eminent characteristic, speed emerges as an important 
consideration when the accuracies of several techniques are 
similar. 

To accurately determine the speed versus accuracy trade-
off (SvAT) of these techniques, we stipulated that all 
simulations run on the same machine to eliminate differences 
in the processor, memory sub-system, network, operating 
system, etc. Due to the number of simulations (approximately 
30,000 for this analysis), all test cases were simulated only 
once. Therefore, measurement error could very slightly alter 
the results. In total, approximately 50 configurations, which 
represent the envelope of the hypercube of potential 
configurations, were simulated for each technique.  

Figures 3 and 4 present the SvAT graphs of gcc and mcf, 
respectively, which were fairly representative of all 
benchmarks and were the most interesting. Speed and 
accuracy are on the X and Y axes, respectively. The speed of 
a technique is simply the total simulation time of that 
technique as a percentage of the reference input set’s total 

simulation time while the accuracy of that technique is the 
Manhattan distance between the CPI vectors of the technique 
and the reference input set. (We used the Manhattan 
distance instead of the Euclidean distance in this analysis 
since it more clearly presented the results.) We included the 
cost of generating simulation points (for SimPoint) and 
simulation checkpoints (for SimPoint and the truncated 
execution techniques) into the simulation speed. (Note: 
SimPoint 2.0 [19] dramatically reduces the time needed to 
determine the simulation points; it was not available when we 
started this study. However, for gcc and mcf, the cost of 
generating simulation checkpoints is the dominant non-
simulation cost.) The cost of generating the reduced input sets 
and the initial profiling of SMARTS was not included as 
these costs were not quantified in [13] and [20], respectively. 
However, for SMARTS, the simulation times of the 
simulations that did not sample at a high enough frequency, 
i.e. required additional simulations, were included in the cost. 
(Across all benchmarks, the average number of simulations 
for each SMARTS permutation ranged from 1 to 1.59, with a 
maximum of 6. Using slightly higher-than-recommended 
sampling frequencies can reduce the maximum number of 
simulations to about 3 [21].) Including or excluding the cost 
of a technique merely moves/stretches the technique’s lines 
right or left, respectively. Finally, only the highest accuracy 
permutation of each technique is presented for the FF X + 
Run Z, FF X + WU Y + Run Z, and SMARTS techniques. 
The legend specifies the exact permutation. 

The first key conclusion that we draw from these two 
figures is that the SvAT of reduced input set and the truncated 
execution techniques is very poor. Not only is their accuracy 
very poor, their poor accuracy is compounded by long 
simulation times. In particular, the train input set has the 
worst SvAT since its accuracy ranks towards the bottom and 
since its simulation time is significantly longer than any other 
technique. Therefore, the reduced input set and truncated
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Figure 4. Simulation Speed versus Accuracy Trade-Off Graph of mcf 
 
 
execution techniques, from the viewpoints of simulation 
accuracy and speed, do not offer any advantages compared to 
SimPoint and SMARTS. 

It is interesting to note that due to gcc’s highly complex 
phase behavior, increasing the detailed simulation period of 
the truncated execution techniques does not automatically 
confer higher accuracy. Rather, blithely increasing the 
simulation period can simultaneously decrease both the 
simulation accuracy and speed. 

The second key conclusion shown in Figures 3 and 4 is 
that, on average, SMARTS is the most accurate technique, 
which was one of the key conclusions of Section 5. (The 
accuracy of all nine SMARTS permutations was very 
similar.) Although the accuracy of SimPoint is not quite as 
good as SMARTS, SimPoint has a better SvAT than does 
SMARTS, even after including the cost of generating the 
simulation points (which is zero if the architect uses those 
found on the SimPoint web page) and including the cost of 
generating the checkpoints (the cost of which is amortized by 
successive runs and can be decreased by picking early 
simulation points [16]). Therefore, if the architect’s principal 
concern is accuracy, then SMARTS is the most appropriate 
technique. However, if the architect is willing to sacrifice a 
little accuracy for increased simulation speed (and who isn’t 
around deadline time?), then SimPoint is the most appropriate 
technique. 

In summary, from the perspective of a SvAT, the best 
techniques are, listed in descending order of SvAT: SimPoint, 
SMARTS, FF X + Run Z, FF X + WU Y + Run Z, Run Z, and 
reduced input sets, although there is a large separation 
between SimPoint and SMARTS, the two sampling 
techniques, and the others. 
 
6.2 Potential Configuration Dependence 
 

Another relevant consideration for architects is how the 
accuracy of these techniques changes based on the processor 

configuration. The accuracy of the ideal technique will 
remain constant across a broad range of configurations. A 
predictable and stable accuracy allows trends to emerge from 
the noise of error. To quantify the magnitude of this potential 
problem, we calculated the percentage error between the CPIs 
of each technique and the reference input set and then 
determined the frequencies of the CPI error for all 
configurations. There is a configuration dependence when 
there are a large number of configurations in the higher CPI 
error ranges and/or if error does not trend. Figure 5 shows the 
percentage of configurations that fell into each range of CPI 
errors for that specific permutation across all benchmarks. 
For each technique, two permutations, worst (left) and best 
(right), are shown. A permutation was selected as the worst or 
best when it had the lowest or highest percentage, 
respectively, of configurations in the 0% to 3% error range. 

Figure 5 shows three key results. First, since the CPI 
accuracy of the reduced input set and truncated execution 
techniques is extremely poor, both of these types of 
techniques have a significant configuration dependence. The 
second key result is that SMARTS has virtually no 
configuration dependence. Even for the worst permutation, in 
almost 80% of all configurations, SMARTS still yields a CPI 
value that is within 3% of the actual reference input set 
CPI. In the best permutation, this percentage climbs to almost 
98%. However, this percentage is slightly less than the target 
of 99.7% of the configurations being within ±3% of the 
reference input set’s CPI [20]. Nevertheless, given the 
“extreme” nature of the configurations – they represent 
configurations at the envelope of the hypercube of potential 
configurations – we conclude that SMARTS has virtually no 
configuration dependence. Finally, for SimPoint, in the worst 
permutation, there is a significant configuration dependence 
that largely disappears in the best permutation. However, 
even in the best permutation, the percentage of configurations 
for which the CPI error is greater than 3% is higher than the
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Figure 5. Configuration Dependence: Histogram of CPI Error (Relative to reference) for All Benchmarks 
 
 
best case for SMARTS. 

Although the results in Figure 5 show the frequency of 
CPI errors across all benchmarks, we found that the results 
presented in Figure 5 were fairly typical for each benchmark 
and that no benchmarks were “outliers” in terms of their 
frequency of CPI error. 

Although the absolute accuracies may not be perfect, 
another key question regarding configuration dependence is: 
“Is the relative accuracy constant?” For the reduced input set 
and truncated execution techniques, the relative accuracy is 
not constant, in that the CPI error for these two types of 
techniques is not consistently positive or negative. Rather, as 
is especially prominent in gcc, for the same permutation, 
there are significant numbers of configurations that have CPI 
errors that are both less than -27% and greater than 27%. 
Therefore, for these techniques, the CPI error does not trend. 
For SimPoint and SMARTS, the relative accuracy is quite 
good, as least for the most accurate permutation of each 
technique. Even for gcc, the CPI error is consistently positive 
or negative. This conclusion confirms the results for SimPoint 
presented in [16]. 

In conclusion, the results in this section show that the 
reduced input set and truncated execution techniques have 
severe configuration dependences because their CPI results 
are very inaccurate and the CPI error does not trend. By 
contrast, SimPoint and SMARTS have very little, if any, 
configuration dependence because the CPI error is generally 
small and consistent. From a pure CPI error point-of-view, 
however, the accuracy of SMARTS is the best. 
 
7. The Impact of the Simulation Technique on 

the Evaluation of Enhancements 
 

The results in Section 5 quantify the accuracy of each 

technique relative to the reference input set. What is not 
readily apparent, however, is whether there is a correlation 
between those differences and the effect a specific technique 
has on the simulation results. What is more important is 
whether these different techniques would result in different 
conclusions when evaluating a new architectural feature. To 
empirically determine the correlation between the accuracy of 
a technique and the observed simulation results produced 
when evaluating an enhancement, we quantify the induced 
error due to each technique for two microarchitectural 
enhancements, Simplifying and Eliminating Trivial 
Computations (TC) [22] and Next-Line Prefetching (NLP) 
[12]. We chose these two enhancements since TC targets the 
processor core and NLP targets the memory hierarchy. 
Furthermore, TC is a non-speculative enhancement while 
NLP is speculative. 

The results, which are omitted due to space limitations (a 
detailed presentation of these results can be found in [24]), 
show that there is a distinct correlation between the accuracy 
of a technique and the accuracy of its apparent speedup 
results. Therefore, the techniques that are very accurate, such 
as SimPoint and SMARTS, have apparent speedups that are 
very close to the apparent speedup when using the 
reference input set. On the other hand, the inaccurate 
techniques – reduced input sets and truncated execution – 
produce apparent speedups that can be very different than the 
apparent speedup of the reference input set; in the worst 
case, the apparent speedups of these techniques overestimate 
and underestimate the apparent speedup of the reference 
input set by up to 100% (e.g. 0% speedup instead of 30%). 
What is especially troubling is that the speedups for these 
techniques are not consistently higher or lower than the 
speedup for the reference input set. This lack of 
consistency precludes the prospect of accounting for the 



 

magnitude and the direction (positive or negative) of the error 
when examining speedup results. These differences are solely 
attributable to the fundamental inaccuracy of these techniques 
when they are compared to the reference input set. 
 
8. Related Work 
 

Although we found several papers that were somewhat 
related to this paper, we did not find any papers that 
comprehensively evaluated the accuracy of all techniques. 
The papers that did evaluate the accuracy of techniques did so 
in the context of comparing the results of a new technique to 
the results when using the reference input set. The most 
relevant related work falls into two categories: simulation 
methodology and simulator validation. 

Simulation Methodology: Yi et al. [23] proposed using a 
PB design as a means of introducing statistical rigor into 
simulation methodology. More specifically, they used a PB 
design to identify the most significant parameters to help 
choose parameter values, to select a statistically different set 
of benchmarks, and to measure the effect that an 
enhancement has on the processor. The first two applications 
attempt to improve the simulation setup phase while the last 
application improves the analysis phase. 

Eeckhout et al. [8] used statistical data analysis 
techniques to determine the statistical similarity of 
benchmark and input set pairs. To quantify the similarity, 
they used metrics such as instruction mix, branch prediction 
accuracy, cache miss rates, number of instructions in a basic 
block, and maximum amount of parallelism inherent to the 
benchmark. After characterizing each benchmark with these 
metrics, they used statistical techniques such as principal 
component and cluster analysis to cluster the benchmarks and 
input set pairs together. 

Simulator Validation: Black and Shen [1] iteratively 
improved the accuracy of their performance model by 
comparing the cycle count of their simulator, which targeted a 
specific architecture, against the cycle count of the actual 
hardware. Their results show that modeling, specification, 
and abstraction errors were still present in their simulation 
model, even after a long period of debugging. Their work 
showed the need for extensive, iterative validation before the 
results from a performance model can be trusted.  

Desikan et al. [7] measured the amount of error, as 
compared to the Alpha 21264 processor, that was present in 
an Alpha version of the SimpleScalar simulator. Their results 
showed that the simulators that model a generic machine (i.e. 
non-specific machine, such as SimpleScalar) generally report 
higher IPCs than simulators that are validated against a real 
machine. On the other hand, unvalidated simulators that 
targeted a specific machine underestimated the performance.  

Gibson et al. [9] described the types of errors that were 
present in the FLASH simulator when compared to the 
custom-built FLASH multi-processor system. To determine 
which errors were present in the FLASH simulator, they 
compared the simulated execution time from the FLASH 
simulator against the actual execution time of the FLASH 
processor. Their results showed that the margin of error (the 
percentage difference in the execution time) of some 

simulators was more than 30%, which is higher than the 
speedups that are often reported for specific architectural 
enhancements. 
 
9. Recommendations 
 

Based on the results of the three characterization 
methods, the speed versus accuracy trade-off, and the 
configuration dependence analysis, we make the following 
recommendations for performing simulation-based 
architecture studies. 

Recommendation #1: Improve the documentation of 
simulation methodologies. From our survey of simulation 
methodologies, the number of unknown techniques accounted 
for half of all papers over the last ten years, and 
approximately one-third of the papers in recent years. 
Inadequately documenting how the results were obtained 
prevents other researchers from verifying those results or 
building upon them. More importantly, results that are 
presented without adequate documentation or justification of 
the simulation methodology may be considered to be suspect. 

Recommendation #2: Sampling-based simulation 
techniques, such as SimPoint and SMARTS, should be used 
when the goal is to get reference-like results. Simulation 
with reduced input sets should be viewed as using a 
completely different benchmark program than what is 
obtained when using the reference input set. Given its 
generally low level of accuracy, the truncated execution 
technique should not be used since any conclusions that are 
drawn from the results using this technique may simply be a 
figment of the technique, rather than a bona fide effect. Due 
to the very high levels of accuracy and their very low 
simulation times, we highly recommend that sampling-based 
techniques – as epitomized by SimPoint and SMARTS – be 
used instead. While this may seem to be an intuitively 
obvious recommendation, the fraction of papers that used 
reduced input sets or truncated execution techniques actually 
increased from 68.9% in the eight years prior to the 
introduction of SimPoint, to 82.1% in the conferences that 
occurred after SimPoint was introduced. Finally, benchmarks 
from old benchmark suites should not be used unless there is 
compelling reason to do so; especially so since SimPoint and 
SMARTS are both fast and accurate. In our survey, we found 
a surprising number of papers that used benchmarks that were 
more than five years old. (So as not to sound too preachy, we 
would like to point out that we have been guilty of some of 
these problems ourselves.) 

Recommendation #3: Suggestions for selecting a 
simulation technique. Based on the results presented in the 
previous three sections and from our experience in this study, 
Figure 6 presents the detailed ordering of the six techniques 
for several different categories. The Technical Factors branch 
orders the techniques based on the conclusions from the three 
characterizations (performance bottleneck, execution profile, 
and architectural metrics), the speed versus accuracy trade-
off, and the configuration dependence analysis. 

The Complexity to Use category reflects the complexity 
of the changes that are needed to support that technique. 
Since the reduced input sets do not require any changes, they



 

 

 
Figure 6. Decision Tree for the Selection of a Simulation Technique 

 
 
have the lowest complexity to use. SMARTS has the highest 
complexity to use since it requires changes to the simulator to 
support periodic sampling, functional warming, and statistical 
calculations. The other four techniques have a medium 
complexity of use because they could require minor changes 
to the simulator to support fast-forwarding, warm-up, and 
early termination. The Cost to Generate category is the 
amount of effort that is needed “create” each technique. Since 
SimPoint requires minimal user intervention to find a 
benchmark’s simulation points, it has the lowest cost. Note, 
however, that for some compiler-based studies, the architect 
may need to repeatedly generate new simulation points to 
reflect the status of various levels of code optimization. On 
the other end of the spectrum, SMARTS and reduced input 
sets have the highest costs to generate since new SMARTS 
parameters (U, W) may need to be found or new reduced 
input sets need to be created for each benchmark suite.  

The Processor Component Analysis branch orders the 
techniques based on how similar their performance 
bottlenecks are within each of the processor’s major 
components (i.e. Instruction Fetch, Execute, and Memory 
Hierarchy). After eliminating the parameters that are less 
significant than the dummy parameters (i.e. noise), we then 
compute the Euclidean distance between each technique and 
the reference input set. Then, to facilitate comparisons 
across techniques and components, we divide the Euclidean 
distance by the number of significant parameters in the 
reference input set. By focusing on specific components, 
this analysis determines which techniques should be used for 
which components.  

While these results confirm the results obtained in the 

previous sections, there are some interesting results. For each 
of the three components and each benchmark, SMARTS and 
SimPoint show the best behavior. For gzip, equake and vpr-
Route, Run Z is not appropriate for any of the components 
and therefore should not be used. Reduced input sets are not 
appropriate when focusing on Instruction Fetch and Memory 
Hierarchy parameters for gcc and vpr-Place. On the other 
hand, for gzip, the reduced input sets are as accurate as 
SimPoint and SMARTS. 

In summary, for different processor components and for 
a particular benchmark, the accuracy of a technique with 
respect to the others may change. However, SimPoint and 
SMARTS are the best overall techniques. 
 
10. Conclusion 
 

With the advent of popular execution-driven simulators 
such as SimpleScalar, simulating the reference input set 
of a SPEC 2000 benchmark to completion is not an option for 
most computer architects. Consequently, architects have 
proposed several alternative simulation techniques with the 
intent of decreasing the simulation time. Prevailing and 
emerging techniques fall into the categories of: 1) Reduced 
input sets, 2) Truncated execution, and 3) Sampling. In this 
paper, we characterized the accuracy of the MinneSPEC and 
SPEC reduced input sets; Run Z, FF X + Run Z, and FF X + 
WU Y + Run Z from the truncated execution category; and 
SimPoint and SMARTS from the sampling category. 

We used three characterizations to determine the 
accuracy of each technique, with respect to the reference 
input set. First, we used the statistical Plackett and Burman 



 

design to perform a performance bottleneck characterization 
of each technique. Second, we performed an execution profile 
analysis by tallying the basic block execution frequencies and 
instruction counts. Third, we used several architectural 
performance metrics as the final characterization method. 
After evaluating accuracy of these techniques with the 
previous three characterizations, we evaluated the speed 
versus accuracy trade-off and the potential configuration 
dependence of each technique. Finally, we then showed how 
the induced error of each technique can affect the 
performance of two microarchitectural enhancements. 

To evaluate the accuracy, speed versus accuracy, 
configuration dependence, and the apparent effect on the 
speedup for the 69 permutations of the techniques for 10 
benchmarks, we simulated over 1015 detailed instructions, 
which required about 40 CPU-years of simulation time. 

Our results lead to several important conclusions. First, 
the accuracy of the reduced input set and truncated execution 
techniques was very poor for all three characterizations and 
the poor accuracy of these two techniques is not offset by 
faster simulation speed, which further diminishes their utility. 
Second, these two techniques have significant configuration 
dependences because they have a high frequency of large CPI 
errors and because the CPI error does not trend. Third, as a 
result of these inaccuracies, the speedup results for these 
techniques does predictably trend. 

Fourth, our results showed that, for all three 
characterizations and for the configuration dependence 
analysis, SimPoint and SMARTS are both very accurate 
techniques. Fifth, while SMARTS is slightly more accurate, 
SimPoint has a better speed versus accuracy trade-off. 
Finally, the most accurate permutation of both techniques 
produces very accurate estimates of the apparent speedup. 

The final contribution of this paper is a decision tree to 
help architects choose the most appropriate technique(s) 
across on a wide range of categories. 
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